- Home
- Standard 11
- Mathematics
The sines of two angles of a triangle are equal to $\frac{5}{{13}}$ & $\frac{{99}}{{101}}.$ The cosine of the third angle is :
$245/1313$
$255/1313$
$735/1313$
$725/1313$
Solution
Given,
Let the angles be $A, B \,and\, C$. $\sin A=\frac{5}{13}$ and es $\sin B=\frac{99}{101}$
we know;
$\cos \theta=\sqrt{1-\sin ^2 \theta}$
Hence,
$\cos A =\sqrt{1-\sin ^2 A}=\sqrt{1-\left(\frac{5}{13}\right)^2}$
$=\sqrt{\frac{169-25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13}$
simitarly, $\cos B=\sqrt{1-\sin ^2 B}=\frac{20}{101}$.
In a $\Delta$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad \angle C=180^{\circ}-(\angle A+\angle B)$
$\Rightarrow \cos C=\cos (180-(A+B))$
$\Rightarrow \cos C=-\cos (A+B)$
${[\cos (\pi-\theta)=-\cos \theta] }$
$\Rightarrow \cos C=-[\cos A \cos B-\sin A \cdot \sin B]$
$\Rightarrow \cos C=-\left[\frac{12}{13} \times \frac{20}{101}-\frac{5}{13} \times \frac{99}{101}\right]$
$\Rightarrow \cos C=\frac{255}{1313}$